
 Public Imagination Technologies

PowerVR 1 Revision PowerVR SDK REL_4.0@3855898a

PowerVR

Performance Recommendations

Copyright © Imagination Technologies Limited. All Rights Reserved.

This publication contains proprietary information which is subject to change without notice and is
supplied 'as is' without warranty of any kind. Imagination Technologies and the Imagination

Technologies logo are trademarks or registered trademarks of Imagination Technologies Limited. All
other logos, products, trademarks and registered trademarks are the property of their respective

owners.

Filename : PowerVR.Performance Recommendations

Version : PowerVR SDK REL_4.0@3855898a External Issue

Issue Date : 15 Dec 2015

Author : Imagination Technologies Limited

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 2 Performance Recommendations

Contents

1. Introduction ... 4

1.1. Document Overview ... 4
1.2. The Golden Rules ... 4
1.3. Optimal Development Approach... 4
1.4. Understanding Rendering Bottlenecks ... 4

2. Optimizing Geometry.. 6

2.1. Geometry Complexity ... 6
2.2. Primitive Type ... 6
2.3. Data Types ... 6

2.3.1. “Fixed” Data Types ... 6
2.4. Interleaving Attributes ... 6
2.5. Vertex Buffer Objects ... 8

3. Optimizing Textures ... 8

3.1. Texture Size .. 8
3.2. Texture Compression ... 8

3.2.1. PVRTexTool ... 9
3.2.2. Why use PVRTC? .. 10
3.2.3. Image File Compression vs. Texture Compression ... 10

3.3. MIP-Mapping .. 12
3.3.1. Advantages .. 12
3.3.2. Generation .. 12
3.3.3. Filtering ... 12

3.4. Texture Sampling.. 13
3.4.1. Texture Filtering ... 13
3.4.2. Dependent Texture ... 13
3.4.3. Wide Floating Point Textures ... 13

3.5. Demystifying NPOT .. 14
3.5.1. OpenGL ES Support .. 14
3.5.2. GL_IMG_texture_npot .. 14
3.5.3. Guidelines .. 14

3.6. Texture Uploading .. 15
3.6.1. Texture Warm-up ... 15
3.6.2. Texture Formats and Precision .. 15

3.7. Render to Texture ... 15
3.8. Mathematical Look-ups .. 15

4. Optimizing Shaders .. 16

4.1. PVRShaderEditor ... 16
4.2. Choose the Right Algorithm .. 16
4.3. Know Your Spaces ... 17
4.4. Flow Control .. 17
4.5. Demystifying Precision ... 18

4.5.1. Highp .. 18
4.5.2. Mediump ... 18
4.5.3. Lowp ... 18
4.5.4. Swizzling... 18
4.5.5. Attributes .. 18
4.5.6. Varyings.. 19
4.5.7. Samplers .. 19
4.5.8. Uniforms ... 19
4.5.9. Conversion Costs ... 19

4.6. Scalar Operations ... 20
4.7. “Const” Data in Shaders ... 20

5. Optimizing Specific Techniques ... 21

5.1. Multiple Render Targets (Series6 only) .. 21

 Public Imagination Technologies

PowerVR 3 Revision PowerVR SDK REL_4.0@3855898a

5.2. Efficient Sprite Rendering ... 21

6. Contact Details .. 22

List of Figures
Figure 1. Cyclical profiling ... 4

Figure 2. PVRTexTool GUI ... 9

Figure 3. Image file compression vs. texture compression ... 11

Figure 4. PVRShaderEditor GUI ... 16

Figure 5. Increasing complexity and reducing processing .. 21

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 4 Performance Recommendations

1. Introduction
PowerVR SGX and PowerVR Rogue are Graphics Core architectures from Imagination Technologies
designed specifically for shader-based APIs like OpenGL ES 2.0 and 3.0. Due to their scalable
architectures, the PowerVR family spans a huge performance range.

1.1. Document Overview

The purpose of this document is to serve as recommendation and advice for developers who wish to
get the best graphics performance from a PowerVR SGX or PowerVR Rogue enabled device.
Throughout the document, the specific recommendations for PowerVR SGX and PowerVR Rogue are
marked as appropriate.

1.2. The Golden Rules

The golden rules are a set of more generic performance recommendations that developers should
seek to implement and observe as many of the techniques and principles mentioned in these rules
help to produce well-behaved, high performance graphics applications. These rules are detailed in the
document entitled “PowerVR Performance Recommendations: The Golden Rules”, which is supplied
with the PowerVR SDK.

1.3. Optimal Development Approach

It is crucial to adopt the practices identified in this document from the very start of development in
order to save much time and effort later. Once an application is implemented to a near-final state, the
process of iteration depicted in Figure 1 should be adopted. The main benefit of this approach is that
time is not wasted and graphics quality is not comprised by making changes that do not benefit
performance.

Profile the

application

Identify a

bottleneck

Optimize the

bottleneck

Test the

optimization

Figure 1. Cyclical profiling

1.4. Understanding Rendering Bottlenecks

It is a common misconception that the same actions can speed up any application. For example:

 Polygon count reduction: If the bottleneck of the application is fragment processing or texture
bandwidth then the only result of this action will be to reduce the graphical quality of the
application without improving rendering speed. In fact, if simpler models cause more of the
render target to be covered by a material with complex fragments then this can actually slow
down an application.

 Reduce rendering resolution: In this case, if the fragment processing workload of your
application is not the bottleneck then this will also only serve to reduce the quality of the
graphics in your application without improving performance.

In reality, it is only once the limiting factor of an application is determined by profiling with the correct
tools that optimization work should be applied. It is also important to realise that once work has been

 Public Imagination Technologies

PowerVR 5 Revision PowerVR SDK REL_4.0@3855898a

done then the application requires re-profiling in order to determine whether the work actually
improved performance and whether the bottleneck is still at the same stage of the graphics pipeline. It
may be that the limiting stage in rendering is now at a different place and further optimization should
be targeted accordingly.

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 6 Performance Recommendations

2. Optimizing Geometry

2.1. Geometry Complexity

It is important that an appropriate level of geometry complexity be used for each object or portion of
an object. It is a waste to use a large number of polygons on an object that will never cover more than
a small area of the screen. Likewise, it is a waste to use polygons for detail that will never be seen
due to camera angle, or culling, or to use large amounts for objects that may be drawn with much
fewer (such as spending hundreds of polygons drawing a single quad). Shader techniques such as
bump mapping should be considered to minimize geometry complexity, but still maintain a high level
of perceived detail. Techniques such as “Level of Detail” should be used. This is especially true for
things such as reflection passes where higher amounts of geometry may not be visible.

2.2. Primitive Type

For optimal performance on PowerVR Graphics Cores, a mesh with static attribute data should:

 Use indexed triangle lists;

 Interleave VBO attribute data;

 Not include unused attributes

For optimal vertex shader execution performance, meshes transformed by the same vertex shader
(even if compiled into different shader programs) must have the same VBO attribute data layout.

On some devices, padding each vertex to 16 byte boundaries may also improve performance.

2.3. Data Types

Vertex shaders always expect attributes to be of the type float, this means that all types except

float will require a conversion. This conversion is performed in the USSE pipeline and costs a few

additional cycles. Thus the choice of attribute data type is a trade-off between shader cycles,
bandwidth/storage requirements and precision. It is important that type conversion is considered as
bandwidth is always at a premium.

Precision requirements should be checked carefully, the byte and short types are often sufficient,

even for position information. For example, scaled to a range of 10m the short types give a precision

of 150 µm. Scaling and biasing those attribute values to fit a certain range can often be folded into
other vertex shader calculations, e.g., multiplied into a transformation matrix.

2.3.1. “Fixed” Data Types

The fixed data type uses the same bandwidth as float, but requires additional format conversion

cycles in the USSE pipeline, thus it should be avoided.

2.4. Interleaving Attributes

Two ways exist to store vertex data in memory, either the data is stored with all the information,
position, normals, etc., pertaining to a given vertex in a single block, followed by all the information
pertaining to the next vertex, and so on, or the data can be stored in a series of arrays, each
containing all the information of a particular type for each vertex. For example, an array of positions,
an array of normals, etc. The first of these two options is called “interleaving”. In general data should
be interleaved as this provides better cache efficiency, and thus better performance.

Two major caveats exist to this rule. Interleaving should not be used if several meshes are to share
the same array of vertex attributes. In this case putting the instances of this attribute into their own
array may result in better performance, and will save bandwidth and storage space due to there being
less duplication.

 Public Imagination Technologies

PowerVR 7 Revision PowerVR SDK REL_4.0@3855898a

Interleaving should also not be used if a single attribute will be updated frequently, outside of the
Graphics Core, while the other attributes remain the same. In this instance, data that will not be
updated should be interleaved, while data that will be updated is held in a separate array.

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 8 Performance Recommendations

2.5. Vertex Buffer Objects

Vertex Buffer Objects (VBO) are the preferred way of storing vertex and index data. Since VBO
storage is managed by the driver there is no need to copy an array from the client side at every draw
call and the driver is able to perform some transparent optimizations.

Pack all the vertex attributes that are required for a mesh into the same VBO unless a mixture of static
and dynamic attributes are being used. Do not create a VBO for every mesh, it is a good idea to
group meshes that are always rendered together in order to minimize buffer rebinding, this also has
the benefit of improving batching.

As the TBDR tends to process multiple frames at a time, the driver has to internally allocate multiple
buffers for dynamic VBOs so that each frame has a unique dynamic buffer associated with it. Because
dynamic VBOs cause the driver to behave in this way it is generally better for performance to resubmit
vertex data that changes on a per-frame basis. If there is a mesh where only some of the vertex data
is dynamic (for example, a skinned character in a game) then a VBO should be created that contains

the static data and use calls to glVertexAttribPointer() to resubmit the dynamic vertex data.

On a similar note, a VBO that will never change should always set STATIC_DRAW while a VBO whose

contents will change should never set it.

3. Optimizing Textures

3.1. Texture Size

It is a common misconception that bigger textures always look better; a 1024x1024 texture that never
takes up more than a 32x32 area of the screen is a waste of both storage space and reduces cache
efficiency. A texture’s size should be based on its usage; there should be a 1 pixel to 1 texel mapping
when the object that it is mapped to is viewed from the closest allowable distance.

Before considering reducing the resolution of your texture assets to save storage space, you should
apply texture compression. If the quality of the lossy texture compression is unacceptable, you can
then consider using an 8 or 16 bit per pixel uncompressed format. If you still need to reduce the
storage space of your assets, you should then consider reducing the resolution of your images.

3.2. Texture Compression

Modern applications have become graphically intensive. Certain types of software, such as games or
navigation aids, often need large amounts of textures in order to represent a scene with satisfying
quality. Texture compression can save or allow better utilization of bandwidth, power, and memory
without noticeably losing graphical quality and should be used as much as possible. PowerVR
hardware offers a specific form of texture compression called “PVRTC” which should be used as
much as possible.

PVRTC is PowerVR’s proprietary texture compression scheme. It uses a sophisticated amplitude
modulation scheme to compress textures: texture data is encoded as two low-resolution images along
with a full resolution, low bit-precision modulation signal. More information can be found in the
whitepaper:

Fenney, S. (2003) 'Texture Compression Using Low-Frequency Signal Modulation' SIGGRAPH
Conference.

Additionally, it supports both opaque (RGB) and translucent (RGBA) textures (unlike other formats,
such as S3TC, that require a dedicated, larger form to support full alpha channels). Is also boasts a
very high image quality for competitive compression ratios: 4 bits per pixel (PVRTC 4bpp) and 2 bits
per pixel (PVRTC 2bpp). At time of writing, no other format is available in hardware at such a low bit
rate.

 Public Imagination Technologies

PowerVR 9 Revision PowerVR SDK REL_4.0@3855898a

3.2.1. PVRTexTool

PVRTexTool (Figure 2) is a utility for compressing textures, which is an important technique that
ensures the lowest possible texture memory overhead at application run-time. The PVRTexTool
package includes a library, command-line and GUI tools, and a set of plug-ins. Plug-ins are available
for Autodesk 3ds Max, Autodesk Maya, and Adobe Photoshop.

Figure 2. PVRTexTool GUI

Each component is capable of converting to a variety of popular compressed texture formats such as
PVRTC and ETC, as well as all of the core texture formats for a variety of different APIs. They also
include a number of advanced features to pre-process the image data, for example, border
generation, colour bleeding and normal map generation.

Textures can be saved to DDS, KTX, or PVR (Imagination’s PowerVR Texture Container format which
benefits from full public specification, support for custom metadata, as well as complete and optimized
resource loading code in the PVRTools). Key features include:

 Supports all core texture formats in OpenGL ES and DirectX 11.1

 PVRTC, ETC and DXT texture compression

 Outputs to PVR, KTX, or DDS files

 Pre-processing textures for efficient rendering

 Normal map generation

 Composition and visualization of cube maps

 Optimized font to texture creation

 Creation of texture arrays

The latest version of the tool can be downloaded here.

http://community.imgtec.com/developers/powervr/tools/pvrtextool/

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 10 Performance Recommendations

3.2.2. Why use PVRTC?

In any given situation, the best texture format to use is the one that gives the required image quality at
the highest rate of compression. The smaller the size of the texture data, the less bandwidth is
required for texture fetches; this reduces power consumption, can increase performance, and allows
for more textures to be used for the same budget. The smallest RGB and RGBA format currently
available on all PowerVR Graphics Cores is PVRTC 2bpp and, as such, it should be considered for
every texture in an application. Larger formats (such as PVRTC 4bpp) should only be used if the
image quality provided by a particular PVRTC 2bpp image does not have sufficient quality. On the
latest PowerVR GPU cores, ASTC compression is also available.

Performance Improvement

The smaller memory footprint of PVRTC means less data is transferred from memory to the Graphics
Core allowing for major bandwidth savings. In situations where memory bandwidth is the limiting
factor in an application’s performance PVRTC can provide a significant boost.

Power Consumption

Memory accesses are one of the primary causes of increased power consumption on mobile devices
where battery life is of the upmost importance. The bandwidth savings and better cache performance
resulting from the use of PVRTC both contribute to decreasing the quantity and magnitude of memory
accesses; which in turn reduce the power consumption of an application.

3.2.3. Image File Compression vs. Texture Compression

Developers are familiar with compressed image file formats such as JPG or PNG. It is important to be
aware of the distinction between these forms of “storage” compression and the texture compression
discussed in this document.

The primary requirement of storage compression schemes is that files compressed using them should
occupy as small an amount of storage in a file system as possible. There is no requirement that the
data stay compressed while in use. The result is that storage-based image file formats tend to
produce very small file sizes, often for very high (or lossless) image quality, but at the cost of
immediate decompression on use. This immediate decompression, usually to 24/32bpp means that
the image, while small on disk, consumes large amounts of bandwidth and memory at runtime.

Texture compression schemes, such as PVRTC are designed to be directly usable by the Graphics
Core. The texture data exists in storage, in memory, and when transferred to the graphics hardware
itself, in the compressed format. The only step in which full-precision colour values are extracted from
a compressed state is when dedicated texture sampling hardware inside the graphics accelerator
passes texel values to the shader processing units. A graphical representation of this can be seen in
Figure 3.

This allows all the advantages mentioned in Section 3.2.2, but puts some limits on the form the
compression technique may take. In order to allow for direct use by the graphics accelerator a texture
format should be optimized for random access, with a minimal size of data from which to retrieve each
texel’s values. Consequently, texture compression schemes are usually fixed bitrate with very high
data locality. Image file formats are not constrained by these requirements and thus can often achieve
higher compression ratios and image quality for a given data size.

 Public Imagination Technologies

PowerVR 11 Revision PowerVR SDK REL_4.0@3855898a

Image is decompressed

Compressed Image

Decompressed

Image 24/32 bpp

System Memory

File System

Texel Value

Graphics Core

Decompressed

Image 24/32 bpp

Compressed Texture 2/4 bpp

Compressed

Texture 2/4 bpp

Compressed

Texture 2/4 bpp

Colour values read directly

Figure 3. Image file compression vs. texture compression

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 12 Performance Recommendations

3.3. MIP-Mapping

MIP-maps are smaller, pre-filtered variants of a texture image, representing different levels-of-detail of
a texture. By using a minification filter mode that uses MIP-maps, the Graphics Core can be set up to
automatically calculate which level-of-detail comes closest to mapping the texels of a MIP-map to
pixels in the render target, and use the right MIP-map for texturing.

3.3.1. Advantages

Using MIP-maps has two important advantages, namely it increases performance by massively
improving texture cache efficiency, especially in cases of strong minification. It also improves image
quality by countering the aliasing that is caused by the under-filtering of textures that do not use MIP-
mapping. The single limitation of MIP-mapping is that it requires approximately 1/3 more texture
memory per image. Depending on the situation, this cost may be minor when compared to the
benefits in terms of rendering speed and image quality.

There are some exceptions where MIP-maps should not be used. Specifically, MIP-mapping should
not be used where filtering cannot be applied sensibly, such as for textures that contain non-image
data such as indices or depth textures. It should also be avoided for textures that are never minified,
for example, UI elements where texels are always mapped one-to-one to pixels.

3.3.2. Generation

Ideally MIP-maps should be created offline using a tool like PVRTexTool (available as part of the
PowerVR Graphics SDK). It is, however, possible to generate MIP-maps at runtime using the function

glGenerateMipmap and this can be useful for updating the MIP-maps for a render to texture target.

This will not work, however, with PVRTC textures which must have their MIP-maps generated offline.
A decision must be made as to which cost is the most appropriate, the storage cost of offline

generation, or the runtime cost of glGenerateMipmap.

3.3.3. Filtering

Finally, it should be noted that the lack of filtering between MIP-map levels can lead to visible seams
at MIP-map transitions, a form of artifacting called “MIP-map banding”. Trilinear filtering using the filter

mode GL_LINEAR_MIPMAP_LINEAR can effectively eliminate these seams, for a price (see Section

3.4.1), and thus achieve an even higher image quality.

 Public Imagination Technologies

PowerVR 13 Revision PowerVR SDK REL_4.0@3855898a

3.4. Texture Sampling

3.4.1. Texture Filtering

Texture filtering is used to increase the image quality of textures used in 3D scenes. However, it
comes at a cost. Filtering works by taking multiple texture fetch values and combining them in order to
produce as good a sampling value as possible to use in fragment calculations. Retrieving multiple
values requires more data to be fetched, possibly from disparate areas of memory and so cache
performance and bandwidth use can be affected. For instance, whenever two MIP-map levels must
be blended together for trilinear filtering, the texture unit in the Graphics Core must spend time and
bandwidth fetching and filtering the required data from the two MIP-map levels in question. This can
cause the processing of a fragment to stall while the data is fetched and adds to the total amount of
memory that must be transferred across the bus in order to render a frame.

For independent texture reads on Series5 and Series5XT Graphics Cores, texture sampling can begin
before the execution of a shader and so the latency of the texture fetch can be avoided. For
dependent reads the cost can further be amortised thanks to the hardware scheduler in PowerVR
Graphics Cores, particularly if the shader in question involves a lot of mathematical calculation. This
latency can be hidden by swapping in another thread on the Graphics Core. This thread will process
as much as possible with the original thread being swapped back once the fetch is complete. Further
information on the functioning of the Coarse Grain Scheduler and thread scheduling within PowerVR
hardware can be found in the “PowerVR Hardware Architecture Guide for Developers”.

The three main techniques for texture filtering are bilinear, trilinear, and anisotropic, where each gives
increased image quality than the previous, at an increasing cost. Performance can be gained by using
an appropriate level of filtering, following the principle of “good enough” (see “PowerVR Performance
Recommendations: The Golden Rules”). Also, not using anisotropic if trilinear is acceptable. Not using
trilinear if bilinear is also acceptable.

3.4.2. Dependent Texture

A dependent texture read is a texture read in which the texture coordinates depend on some
calculation within the shader instead of on a varying. As the values of this calculation cannot be
known ahead of time it is not possible to pre-fetch texture data and so stalls in shader processing
occur.

Vertex shader texture lookups always count as dependent texture reads, as do texture reads in

fragment shaders where the texture read is based on the .zw channels of a varying. On some driver

and platform revisions Texture2DProj() also qualifies as a dependent texture read if given a Vec3

or a Vec4 with an invalid w.

The cost associated with a dependent texture read can be amortised to some extent by hardware
thread scheduling, but they should still be avoided wherever possible for good performance.

Dependent texture reads are significantly more efficient on PowerVR Rogue Graphics Cores than
SGX. However, there are still small performance gains to be had. For this reason, applications should
always calculate coordinates before fragment shader execution unless the algorithm relies on this
functionality.

3.4.3. Wide Floating Point Textures

For textures that exceed 32 bits per texel, each additional 32 bits is counted as a separate texture
read. This also applies to half float texture with 3 or 4 components as well as float textures with 2 or
more components. These larger formats should be avoided unless necessary for a particular effect.

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 14 Performance Recommendations

3.5. Demystifying NPOT

If a 2D texture has dimensions which are a power-of-two (i.e., width and height are 2
n
 and 2

m
for some

m and n), then the texture is said to be a POT texture (power-of-two). If they are not it is said to be an
NPOT texture (non-power-of-two). This section seeks to clarify the status of NPOT textures in
OpenGL ES.

3.5.1. OpenGL ES Support

NPOT textures are supported as required by the OpenGL ES specifications. However, it is necessary
to point out the following:

 NPOT textures are not supported in OpenGL ES 1.1 implementations.

 NPOT textures are supported in OpenGL ES 2.0 implementations, but only with the wrap mode

of GL_CLAMP_TO_EDGE.

 The default wrap mode in OpenGL ES 2.0 is GL_REPEAT. This must be specifically

overridden in an application to GL_CLAMP_TO_EDGE for NPOT textures to function

correctly.

 If this wrap mode is not correctly set then an “invalid texture” error will occur, likewise a
driver error may occur at runtime, on newer drivers, to highlight the need to set a wrap
mode.

3.5.2. GL_IMG_texture_npot

An extension exists (GL_IMG_texture_npot) to provide some of the functionality found outside of

the core OpenGL ES specification. This extension allows the use of the following filters for NPOT
textures:

 LINEAR_MIPMAP_NEAREST

 LINEAR_MIPMAP_LINEAR

 NEAREST_MIPMAP_NEAREST

 NEAREST_MIPMAP_LINEAR

It also allows the calling of glGenerateMipmapOES with an NPOT texture to generate NPOT MIP-

maps. Like all other OpenGL extensions, the application should check for this extension’s presence
before attempting to load and use it.

3.5.3. Guidelines

Finally, a few additional points should be considered when using NPOT textures:

 POT textures should be favoured over NPOT textures for the majority of use cases as this gives
the best opportunity for the hardware and driver to work optimally.

 A 512x128 texture will qualify as a POT texture, not an NPOT texture, where rectangular POT
textures are fully supported.

 2D applications (such as a browser or other application rendering UI elements where an NPOT
texture is displayed with a one-to-one texel to pixel mapping) should see little performance loss
from the use of NPOT textures other than possibly at upload time.

 To ensure that texture upload can be optimally performed by the hardware, use textures where
both dimensions are multiples of 32 pixels.

 The use of NPOT textures may cause a drop in performance during 3D rendering. This can vary
depending upon MIP-map levels, size of the texture, texture usage and the target platform.

 Public Imagination Technologies

PowerVR 15 Revision PowerVR SDK REL_4.0@3855898a

3.6. Texture Uploading

When a texture is uploaded through the use of glTexImage2D the input data is in linear scan-line

format. Internally, PowerVR hardware uses its own layout to improve memory access locality and
improve cache efficiency. Reformatting of the data is done on chip by dedicated hardware and thus is
very fast, however, it is still recommended that a few steps be taken to minimize the cost of this
reformat.

 Textures should be uploaded during non-performance critical periods, such as initialisation. This
helps avoid the frame rate dips associated with additional texture loading.

 Avoid uploading texture data mid-frame to a texture object that has already been used for that
frame.

 Consider performing a “warm-up” step after texture uploads have been performed. Once again,
this helps avoid the frame rate dips associated with texture loading.

3.6.1. Texture Warm-up

The warm-up step mentioned before ensures that textures are fully uploaded immediately. By default,

glTexImage2D does not perform all the processing required to upload immediately. Instead, the

texture is fully uploaded the first time it is used. It is possible to force an upload by drawing a series of
triangles off screen or otherwise obscured with the texture object in question bound and so marked for
use. Performing this for all textures in a scene will avoid the cost and potential stutters when they are
uploaded on first use.

3.6.2. Texture Formats and Precision

In general, textures should be read at lowp (see Section 4.5.7). The exceptions to this are half float

textures which should be read as mediump, and float and depth textures which should be read as

highp.

3.7. Render to Texture

The preferred method for rendering to textures on OpenGL ES 2.0 is through the use of Frame Buffer
Objects (FBOs) with textures as attachments.

For maximised performance, FBOs should be rendered to in series, submitting all calls for one FBO
before moving to the next. This serves to minimize state changes, as well as reducing unnecessary
memory bandwidth usage caused by flushing partially completed renders when the target FBO is
changed. For optimal performance, attachments should be unique to each FBO and attachments
should not be added or removed once the FBO has been created.

3.8. Mathematical Look-ups

Sometimes it can be a good idea to encode the results of a complex function into a texture and use it
as a look-up table instead of performing the calculations in a shader. However, this will only provide a
boost in performance if a bottleneck has been identified in the processing of the shader in question,
and bandwidth is free to perform the texture lookup. If the function parameters (and thus the texture
coordinates in the look-up table) vary wildly between adjacent fragments then cache efficiency will
suffer. As a significant amount of work must be saved for this to be an optimisation, profiling should be
performed to determine if the results of using look-up tables are acceptable.

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 16 Performance Recommendations

4. Optimizing Shaders

4.1. PVRShaderEditor

To demystify shader optimization, we provide a GUI utility called PVRShaderEditor (Figure 4) to share
a wealth of off-line performance analysis data for developers as shaders are being written.

Figure 4. PVRShaderEditor GUI

Additionally, we provide shader disassembly for PowerVR Rogue GPUs within the tool so you can see
the exact GPU instructions that have been generated by the compiler for your shader. Key features of
the tool include:

 Syntax highlighting for GLSL ES, GLSL, PFX, HLSL and OpenCL Kernels

 Supports PowerVR Series5, Series5XT and Series6 offline GLSL ES compilers

 Per-line cycle count estimates (PowerVR Series5, Series5XT and Series6 GPUs)

 Simulated performance estimates (PowerVR Series5 and Series5XT GPUs)

 Series6, Series6XT and Series6 FP16 disassembly

The latest version of the tool can be downloaded here.

4.2. Choose the Right Algorithm

For complex shaders that run for more than a few cycles, picking the right algorithm is usually more
important than low-level optimizations. It is highly recommended that a fast, well designed, algorithm
be favoured over small performance tweaks to a poor algorithm. Bear in mind, that, although
increasingly powerful, mobile graphics hardware is not designed to handle some of the latest
techniques in desktop and console shaders. As such, a reduction in complexity will likely be needed
from some of these techniques for mobile shader implementations.

http://community.imgtec.com/developers/powervr/tools/pvrshadereditor/

 Public Imagination Technologies

PowerVR 17 Revision PowerVR SDK REL_4.0@3855898a

4.3. Know Your Spaces

A common mistake in vertex shaders is to perform unnecessary transformations between model
space, world space, view space and clip space. If the model-world transformation is a rigid body
transformation, i.e., it only consists of rotations, translations, and mirroring, lighting and similar
calculations can be performed directly in model space. Transforming uniforms such as light positions
and directions to model space is a per-mesh operation, as opposed to transforming the vertex
position to world or view space once per vertex and so is an optimization. In cases where a particular
space must be used, e.g., for cube map reflections, it is often best to use this single space
throughout.

4.4. Flow Control

PowerVR hardware offers full support for flow control in both vertex and fragment shaders without the
need to explicitly enable an extension. When conditional execution depends on the value of a uniform
variable, this is called “static flow control”, and the same shader execution path is applied to all vertex
or fragment instances in a draw call. “Dynamic flow control”, on the other hand, refers to conditional
execution based on per-fragment or per-vertex data, e.g., textures or vertex attributes.

Static flow control can be used to combine many shaders into one big “uber-shader”. Thorough
profiling should be done when taking this approach, however, as a performance advantage may not
be gained. A better solution when an uber-shader is desired is to use pre-processor defines to create
separate shaders from one larger shader at build time, effectively creating many smaller shaders from
a single original source file.

Using dynamic branching in a shader has a non-constant overhead that depends on the exact shader
code. Dynamic branching is, therefore, unpredictable in its effect on performance. In general, the
following specific points should be considered:

 Make use of conditionals to skip unnecessary operations when the condition is met in a significant
number of cases.

 Do not branch to discard (see “PowerVR Performance Recommendations: The Golden Rules”).

 Series5 and Series5XT only: Avoid branching to a texture read as samplers in dynamic
branches qualify as “dependent texture reads” and will harm performance.

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 18 Performance Recommendations

4.5. Demystifying Precision

PowerVR hardware is designed with support for the multiple precision features of graphics APIs such
as OpenGL ES 2.0 and OpenGL ES 3.0. Three precision modifiers are included in the API spec for

OpenGL ES 2.0 onwards, namely mediump, highp, and lowp. Lower precision calculations can be

performed faster, but need to be used carefully to avoid trouble with visible artefacts being introduced.

The best method of arriving at the right precision for a given value is to begin with lowp or mediump

for everything (except samplers) then increase the precision of specific variables until the visual
output is as desired.

4.5.1. Highp

Float variables with the highp precision modifier will be represented as 32 bit floating point values,

whereas integer values range from 2
31

-1 to -2
31

. This precision should be used for all vertex position
calculations, including world, view, and projection matrices, as well as any bone matrices used for

skinning where the precision, or range, of mediump is not sufficient. It should also be used for any

scalar calculations that use complex built-in functions such as sin, cos, pow, log, etc.

4.5.2. Mediump

Variables declared with the mediump modifier are represented as 16 bit floating point values covering

the range [65520, -65520]. The integer values cover the range [2
15

-1, -2
15

]. This precision level

typically offers a performance improvement over highp, and should be considered wherever highp

would normally be used (provided the precision is sufficient and maximum and minimum values will
not be overflowed).

4.5.3. Lowp

A variable declared with the lowp modifier will use a 10 bit fixed point format on Series5, allowing

values in the range [-2, 2] to be represented to a precision of 1/256. The integer values are in the
range of [2

9
 -1, -2

9
]. This precision is useful for representing colours and any data read from low

precision textures, such as normals from a normal map. Care must be taken not to overflow the

maximum or minimum value of lowp precision, especially with intermediate results.

4.5.4. Swizzling

Swizzling is the act of accessing or reordering the components of a vector out of order. Some
examples of swizzling can be found next:

a = var.brg; // Swizzled – Out of order access

b = vec3(var.g, var.b, var.r); // Swizzled – Out of order access

c = vec3(vec4); // Not swizzled – Dropping a component does not change

 // access order

d.gr = a.gr + b.gr // Not swizzled – This will be optimized to a

 // non-swizzled form

Swizzling costs performance on Series5 (lowp only) and Series5XT (all precisions) due to the
additional work required to reorder vector components. As PowerVR Series6 is scalar based,
swizzling is a significantly cheaper operation.

4.5.5. Attributes

The per-vertex attributes passed to a vertex shader should use a precision appropriate to the data-

type being passed in, so, for example, highp would be unrequired for a float whose maximum value

never goes above 2 and for which a precision of 1/256 would be acceptable.

 Public Imagination Technologies

PowerVR 19 Revision PowerVR SDK REL_4.0@3855898a

4.5.6. Varyings

Varyings represent the outputs from the vertex shader which are interpolated across a triangle and
then fed into the fragment shader. Each varying requires additional space in the parameter buffer, and
additional processing time to perform interpolation. To keep this to a minimum, as few a number of
varyings as possible should be used.

Packing Varyings

Packing multiple varyings together, for example packing two Vec2 into a single Vec4 should suffer no

performance penalty and will save varyings. Exclusively on PowerVR Series5 and Series5XT, co-

ordinate varyings which are packed into the .zw channel of a Vec4 will always be treated as a

dependent texture read and should be avoided (see Section 3.4.2).

4.5.7. Samplers

Samplers are used to sample from a texture bound to a certain texture unit. The default precision for

sampler variables is lowp, and generally this is good enough. Two main exceptions exist to the lowp

rule. If the sampler will be used to read from either a depth or float texture then it should be declared

with highp. On the other hand, if the sampler will be used to read from a half float texture then it

should be declared as mediump.

4.5.8. Uniforms

Uniform variables represent values that are constant for all vertices or fragments processed as part of
a draw call. Similar to redundant state changes, redundant uniform updates in between draw calls
should be avoided. Unlike attributes and varyings, uniform variables can be declared as arrays.
However, care should be taken when using uniform arrays. This is because while a certain number of
uniforms can be stored in registers on-chip, large uniform arrays will be stored in memory and
accessing them comes at a bandwidth and execution time cost.

Constant Calculations

The PowerVR shader compiler is able to extract calculations based on constant values (for example
uniforms) from the shader and perform these calculations once per draw call.

4.5.9. Conversion Costs

When performing arithmetic on multiple precisions within the same calculation it is likely that values
will have to be “packed” or “unpacked”. Packing is the act of taking a higher precision value and
placing into a lower precision variable while unpacking is the reverse and involves taking a lower
precision value and placing it into a higher precision variable.

Where possible precisions should be kept the same for an entire calculation as each pack and unpack
has a cost associated with it. This cost can be further amortised by writing shaders in such a way that
all higher precision calculations are performed together, at the top of the shader, and all lower
precision calculations performed at the bottom. This ensures that variables are not repeatedly packed

and unpacked. It also ensures that variables are not all unpacked into highp thereby losing any

benefit of using lower precision.

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 20 Performance Recommendations

4.6. Scalar Operations

It is very easy to accidently vectorise a calculation. Hence, one should be wary of vectorising scalar
operations where it cost more cycles for the same output. For example:

highp vec4 v1, v2;

highp float x, y;

// Bad

v2 = (v1 * x) * y; // vector * scalar followed by vector * scalar totals 8 scalar muladds

// Good

v2 = v1 * (x * y); // scaler * scalar followed by vector * scalar totals 5 scalar muladds

4.7. “Const” Data in Shaders

If used correctly the const keyword can provide a significant performance boost. For example, a

shader that declares a const array outside of the main() block can perform significantly better

than the same shader with the array not marked as const, even if the array could be treated as such.

Another example would be the use of a const value to reference an array member. In this example, if

the value is const the Graphics Core can know ahead of time that the number will not change and

data can be pre-fetched prior to the shader being ran.

 Public Imagination Technologies

PowerVR 21 Revision PowerVR SDK REL_4.0@3855898a

5. Optimizing Specific Techniques

5.1. Multiple Render Targets (Series6 only)

Multiple Render Targets (MRTs) are available in a variety of APIs, and are supported on PowerVR
hardware from Series6 onwards. By using MRTs properly developers can take advantage of the tile-
based architecture of PowerVR hardware, keeping all render targets entirely on-chip for a significant
performance boost. In order to benefit from this feature the combined bit rate of all MRTs should be
no more than 128bits per pixel.

5.2. Efficient Sprite Rendering

Rendering sprites efficiently may seem like a trivial exercise. However, without careful consideration
an application may be unresponsive and sluggish due to poor graphics performance. Traditional sprite
render tends to see textures drawn, using alpha blending, on to quads. These quads will consist of
large areas of alpha, either full alpha, or partial alpha. Areas of full alpha are traditionally discarded

using either the discard keyword or alpha testing, while areas of partial alpha undergo blending.

Both of these have some form of impact on performance versus fully opaque objects meaning that a
large number of sprites being drawn inefficiently can seriously harm performance.

The discard keyword (see “PowerVR Performance Recommendations: The Golden Rules”) should

be avoided in favour of the much faster alpha blending. Even when favouring alpha blending,
performance can still be affected if there are a large number of sprites. One method to minimise the
impact of several layers of blended sprites is to increase the geometry complexity of the sprites in
order to reduce the amount of wasted transparent fragments. For example, if a sprite is circular in
shape and is rendered using the most optimal fitting quad, 22% of the fragments processed are
redundant. Significant performance improvements can be gained by reducing the wasted
transparency by increasing geometry complexity.

PowerVR hardware has excellent vertex processing capabilities and is designed to handle large
amounts of geometry data, far in excess of what is present in most sprite based applications. As such,
increasing complexity should have minimal performance impact and any impact this may have is most
likely outweighed by the savings of rendering less transparency. If we increase the complexity of the
previous case of a perfectly fitting quad around a circular sprite to that of a dodecagon (twelve sided
polygon) we can reduce the amount of wasted fragment processing to just 3%.

Assuming radius of 64

vs

Figure 5. Increasing complexity and reducing processing

Imagination Technologies Public

Revision PowerVR SDK REL_4.0@3855898a 22 Performance Recommendations

6. Contact Details
For further support, visit our forum:

http://forum.imgtec.com

Or file a ticket in our support system:

https://pvrsupport.imgtec.com

To learn more about our PowerVR Graphics SDK and Insider programme, please visit:

http://www.powervrinsider.com

For general enquiries, please visit our website:

http://imgtec.com/corporate/contactus.asp

http://forum.imgtec.com/
https://pvrsupport.imgtec.com/
http://www.powervrinsider.com/
http://imgtec.com/corporate/contactus.asp

 Public Imagination Technologies

PowerVR 23 Revision PowerVR SDK REL_4.0@3855898a

Imagination Technologies, the Imagination Technologies logo, AMA, Codescape, Ensigma, IMGworks, I2P,
PowerVR, PURE, PURE Digital, MeOS, Meta, MBX, MTX, PDP, SGX, UCC, USSE, VXD and VXE are

trademarks or registered trademarks of Imagination Technologies Limited. All other logos, products,
trademarks and registered trademarks are the property of their respective owners.

	1. Introduction
	1.1. Document Overview
	1.2. The Golden Rules
	1.3. Optimal Development Approach
	1.4. Understanding Rendering Bottlenecks

	2. Optimizing Geometry
	2.1. Geometry Complexity
	2.2. Primitive Type
	2.3. Data Types
	2.3.1. “Fixed” Data Types

	2.4. Interleaving Attributes
	2.5. Vertex Buffer Objects

	3. Optimizing Textures
	3.1. Texture Size
	3.2. Texture Compression
	3.2.1. PVRTexTool
	3.2.2. Why use PVRTC?
	Performance Improvement
	Power Consumption

	3.2.3. Image File Compression vs. Texture Compression

	3.3. MIP-Mapping
	3.3.1. Advantages
	3.3.2. Generation
	3.3.3. Filtering

	3.4. Texture Sampling
	3.4.1. Texture Filtering
	3.4.2. Dependent Texture
	3.4.3. Wide Floating Point Textures

	3.5. Demystifying NPOT
	3.5.1. OpenGL ES Support
	3.5.2. GL_IMG_texture_npot
	3.5.3. Guidelines

	3.6. Texture Uploading
	3.6.1. Texture Warm-up
	3.6.2. Texture Formats and Precision

	3.7. Render to Texture
	3.8. Mathematical Look-ups

	4. Optimizing Shaders
	4.1. PVRShaderEditor
	4.2. Choose the Right Algorithm
	4.3. Know Your Spaces
	4.4. Flow Control
	4.5. Demystifying Precision
	4.5.1. Highp
	4.5.2. Mediump
	4.5.3. Lowp
	4.5.4. Swizzling
	4.5.5. Attributes
	4.5.6. Varyings
	Packing Varyings

	4.5.7. Samplers
	4.5.8. Uniforms
	Uniform variables represent values that are constant for all vertices or fragments processed as part of a draw call. Similar to redundant state changes, redundant uniform updates in between draw calls should be avoided. Unlike attributes and varyings,...
	Constant Calculations

	4.5.9. Conversion Costs

	4.6. Scalar Operations
	4.7. “Const” Data in Shaders

	5. Optimizing Specific Techniques
	5.1. Multiple Render Targets (Series6 only)
	5.2. Efficient Sprite Rendering

	6. Contact Details

