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1. Introduction 
PowerVR SGX and PowerVR Rogue are Graphics Core architectures from Imagination Technologies 
designed specifically for shader-based APIs like OpenGL ES 2.0 and 3.0. Due to their scalable 
architectures, the PowerVR family spans a huge performance range. 

1.1. Document Overview 

The purpose of this document is to serve as recommendation and advice for developers who wish to 
get the best graphics performance from a PowerVR SGX or PowerVR Rogue enabled device. 
Throughout the document, the specific recommendations for PowerVR SGX and PowerVR Rogue are 
marked as appropriate. 

1.2. The Golden Rules 

The golden rules are a set of more generic performance recommendations that developers should 
seek to implement and observe as many of the techniques and principles mentioned in these rules 
help to produce well-behaved, high performance graphics applications. These rules are detailed in the 
document entitled “PowerVR Performance Recommendations: The Golden Rules”, which is supplied 
with the PowerVR SDK. 

1.3. Optimal Development Approach 

It is crucial to adopt the practices identified in this document from the very start of development in 
order to save much time and effort later. Once an application is implemented to a near-final state, the 
process of iteration depicted in Figure 1 should be adopted. The main benefit of this approach is that 
time is not wasted and graphics quality is not comprised by making changes that do not benefit 
performance. 

 

Profile the 

application

Identify a 

bottleneck

Optimize the 

bottleneck

Test the 

optimization
 

Figure 1. Cyclical profiling 

1.4. Understanding Rendering Bottlenecks 

It is a common misconception that the same actions can speed up any application. For example: 

 

 Polygon count reduction: If the bottleneck of the application is fragment processing or texture 
bandwidth then the only result of this action will be to reduce the graphical quality of the 
application without improving rendering speed. In fact, if simpler models cause more of the 
render target to be covered by a material with complex fragments then this can actually slow 
down an application.  

 Reduce rendering resolution: In this case, if the fragment processing workload of your 
application is not the bottleneck then this will also only serve to reduce the quality of the 
graphics in your application without improving performance. 

 

In reality, it is only once the limiting factor of an application is determined by profiling with the correct 
tools that optimization work should be applied. It is also important to realise that once work has been 
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done then the application requires re-profiling in order to determine whether the work actually 
improved performance and whether the bottleneck is still at the same stage of the graphics pipeline. It 
may be that the limiting stage in rendering is now at a different place and further optimization should 
be targeted accordingly.  
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2. Optimizing Geometry 

2.1. Geometry Complexity 

It is important that an appropriate level of geometry complexity be used for each object or portion of 
an object. It is a waste to use a large number of polygons on an object that will never cover more than 
a small area of the screen. Likewise, it is a waste to use polygons for detail that will never be seen 
due to camera angle, or culling, or to use large amounts for objects that may be drawn with much 
fewer (such as spending hundreds of polygons drawing a single quad). Shader techniques such as 
bump mapping should be considered to minimize geometry complexity, but still maintain a high level 
of perceived detail. Techniques such as “Level of Detail” should be used. This is especially true for 
things such as reflection passes where higher amounts of geometry may not be visible. 

2.2. Primitive Type 

For optimal performance on PowerVR Graphics Cores, a mesh with static attribute data should: 

 

 Use indexed triangle lists; 

 Interleave VBO attribute data; 

 Not include unused attributes 

 

For optimal vertex shader execution performance, meshes transformed by the same vertex shader 
(even if compiled into different shader programs) must have the same VBO attribute data layout. 

 

On some devices, padding each vertex to 16 byte boundaries may also improve performance. 

2.3. Data Types 

Vertex shaders always expect attributes to be of the type float, this means that all types except 

float will require a conversion. This conversion is performed in the USSE pipeline and costs a few 

additional cycles. Thus the choice of attribute data type is a trade-off between shader cycles, 
bandwidth/storage requirements and precision. It is important that type conversion is considered as 
bandwidth is always at a premium. 

Precision requirements should be checked carefully, the byte and short types are often sufficient, 

even for position information. For example, scaled to a range of 10m the short types give a precision 

of 150 µm. Scaling and biasing those attribute values to fit a certain range can often be folded into 
other vertex shader calculations, e.g., multiplied into a transformation matrix. 

2.3.1. “Fixed” Data Types 

The fixed data type uses the same bandwidth as float, but requires additional format conversion 

cycles in the USSE pipeline, thus it should be avoided.  

2.4. Interleaving Attributes 

Two ways exist to store vertex data in memory, either the data is stored with all the information, 
position, normals, etc., pertaining to a given vertex in a single block, followed by all the information 
pertaining to the next vertex, and so on, or the data can be stored in a series of arrays, each 
containing all the information of a particular type for each vertex. For example, an array of positions, 
an array of normals, etc. The first of these two options is called “interleaving”. In general data should 
be interleaved as this provides better cache efficiency, and thus better performance.   

Two major caveats exist to this rule. Interleaving should not be used if several meshes are to share 
the same array of vertex attributes. In this case putting the instances of this attribute into their own 
array may result in better performance, and will save bandwidth and storage space due to there being 
less duplication. 
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Interleaving should also not be used if a single attribute will be updated frequently, outside of the 
Graphics Core, while the other attributes remain the same. In this instance, data that will not be 
updated should be interleaved, while data that will be updated is held in a separate array. 
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2.5. Vertex Buffer Objects 

Vertex Buffer Objects (VBO) are the preferred way of storing vertex and index data. Since VBO 
storage is managed by the driver there is no need to copy an array from the client side at every draw 
call and the driver is able to perform some transparent optimizations. 

Pack all the vertex attributes that are required for a mesh into the same VBO unless a mixture of static 
and dynamic attributes are being used. Do not create a VBO for every mesh, it is a good idea to 
group meshes that are always rendered together in order to minimize buffer rebinding, this also has 
the benefit of improving batching.  

As the TBDR tends to process multiple frames at a time, the driver has to internally allocate multiple 
buffers for dynamic VBOs so that each frame has a unique dynamic buffer associated with it. Because 
dynamic VBOs cause the driver to behave in this way it is generally better for performance to resubmit 
vertex data that changes on a per-frame basis. If there is a mesh where only some of the vertex data 
is dynamic (for example, a skinned character in a game) then a VBO should be created that contains 

the static data and use calls to glVertexAttribPointer() to resubmit the dynamic vertex data.  

On a similar note, a VBO that will never change should always set STATIC_DRAW while a VBO whose 

contents will change should never set it. 

3. Optimizing Textures 

3.1. Texture Size 

It is a common misconception that bigger textures always look better; a 1024x1024 texture that never 
takes up more than a 32x32 area of the screen is a waste of both storage space and reduces cache 
efficiency.  A texture’s size should be based on its usage; there should be a 1 pixel to 1 texel mapping 
when the object that it is mapped to is viewed from the closest allowable distance. 

Before considering reducing the resolution of your texture assets to save storage space, you should 
apply texture compression. If the quality of the lossy texture compression is unacceptable, you can 
then consider using an 8 or 16 bit per pixel uncompressed format. If you still need to reduce the 
storage space of your assets, you should then consider reducing the resolution of your images. 

3.2. Texture Compression 

Modern applications have become graphically intensive. Certain types of software, such as games or 
navigation aids, often need large amounts of textures in order to represent a scene with satisfying 
quality. Texture compression can save or allow better utilization of bandwidth, power, and memory 
without noticeably losing graphical quality and should be used as much as possible. PowerVR 
hardware offers a specific form of texture compression called “PVRTC” which should be used as 
much as possible. 

PVRTC is PowerVR’s proprietary texture compression scheme. It uses a sophisticated amplitude 
modulation scheme to compress textures: texture data is encoded as two low-resolution images along 
with a full resolution, low bit-precision modulation signal. More information can be found in the 
whitepaper: 

 

Fenney, S. (2003) 'Texture Compression Using Low-Frequency Signal Modulation' SIGGRAPH 
Conference. 

 

Additionally, it supports both opaque (RGB) and translucent (RGBA) textures (unlike other formats, 
such as S3TC, that require a dedicated, larger form to support full alpha channels). Is also boasts a 
very high image quality for competitive compression ratios: 4 bits per pixel (PVRTC 4bpp) and 2 bits 
per pixel (PVRTC 2bpp). At time of writing, no other format is available in hardware at such a low bit 
rate. 
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3.2.1. PVRTexTool 

PVRTexTool (Figure 2) is a utility for compressing textures, which is an important technique that 
ensures the lowest possible texture memory overhead at application run-time. The PVRTexTool 
package includes a library, command-line and GUI tools, and a set of plug-ins. Plug-ins are available 
for Autodesk 3ds Max, Autodesk Maya, and Adobe Photoshop. 

 

 

Figure 2. PVRTexTool GUI 

 

Each component is capable of converting to a variety of popular compressed texture formats such as 
PVRTC and ETC, as well as all of the core texture formats for a variety of different APIs. They also 
include a number of advanced features to pre-process the image data, for example, border 
generation, colour bleeding and normal map generation. 

Textures can be saved to DDS, KTX, or PVR (Imagination’s PowerVR Texture Container format which 
benefits from full public specification, support for custom metadata, as well as complete and optimized 
resource loading code in the PVRTools). Key features include: 

 

 Supports all core texture formats in OpenGL ES and DirectX 11.1 

 PVRTC, ETC and DXT texture compression 

 Outputs to PVR, KTX, or DDS files 

 Pre-processing textures for efficient rendering 

 Normal map generation 

 Composition and visualization of cube maps 

 Optimized font to texture creation 

 Creation of texture arrays 

 

The latest version of the tool can be downloaded here. 

 

 

http://community.imgtec.com/developers/powervr/tools/pvrtextool/
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3.2.2. Why use PVRTC? 

In any given situation, the best texture format to use is the one that gives the required image quality at 
the highest rate of compression. The smaller the size of the texture data, the less bandwidth is 
required for texture fetches; this reduces power consumption, can increase performance, and allows 
for more textures to be used for the same budget. The smallest RGB and RGBA format currently 
available on all PowerVR Graphics Cores is PVRTC 2bpp and, as such, it should be considered for 
every texture in an application. Larger formats (such as PVRTC 4bpp) should only be used if the 
image quality provided by a particular PVRTC 2bpp image does not have sufficient quality. On the 
latest PowerVR GPU cores, ASTC compression is also available. 

Performance Improvement 

The smaller memory footprint of PVRTC means less data is transferred from memory to the Graphics 
Core allowing for major bandwidth savings. In situations where memory bandwidth is the limiting 
factor in an application’s performance PVRTC can provide a significant boost.  

Power Consumption 

Memory accesses are one of the primary causes of increased power consumption on mobile devices 
where battery life is of the upmost importance. The bandwidth savings and better cache performance 
resulting from the use of PVRTC both contribute to decreasing the quantity and magnitude of memory 
accesses; which in turn reduce the power consumption of an application.  

3.2.3. Image File Compression vs. Texture Compression 

Developers are familiar with compressed image file formats such as JPG or PNG. It is important to be 
aware of the distinction between these forms of “storage” compression and the texture compression 
discussed in this document. 

The primary requirement of storage compression schemes is that files compressed using them should 
occupy as small an amount of storage in a file system as possible. There is no requirement that the 
data stay compressed while in use. The result is that storage-based image file formats tend to 
produce very small file sizes, often for very high (or lossless) image quality, but at the cost of 
immediate decompression on use. This immediate decompression, usually to 24/32bpp means that 
the image, while small on disk, consumes large amounts of bandwidth and memory at runtime. 

Texture compression schemes, such as PVRTC are designed to be directly usable by the Graphics 
Core. The texture data exists in storage, in memory, and when transferred to the graphics hardware 
itself, in the compressed format. The only step in which full-precision colour values are extracted from 
a compressed state is when dedicated texture sampling hardware inside the graphics accelerator 
passes texel values to the shader processing units. A graphical representation of this can be seen in 
Figure 3. 

This allows all the advantages mentioned in Section 3.2.2, but puts some limits on the form the 
compression technique may take. In order to allow for direct use by the graphics accelerator a texture 
format should be optimized for random access, with a minimal size of data from which to retrieve each 
texel’s values. Consequently, texture compression schemes are usually fixed bitrate with very high 
data locality. Image file formats are not constrained by these requirements and thus can often achieve 
higher compression ratios and image quality for a given data size. 
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Figure 3. Image file compression vs. texture compression 
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3.3. MIP-Mapping 

MIP-maps are smaller, pre-filtered variants of a texture image, representing different levels-of-detail of 
a texture. By using a minification filter mode that uses MIP-maps, the Graphics Core can be set up to 
automatically calculate which level-of-detail comes closest to mapping the texels of a MIP-map to 
pixels in the render target, and use the right MIP-map for texturing.  

3.3.1. Advantages 

Using MIP-maps has two important advantages, namely it increases performance by massively 
improving texture cache efficiency, especially in cases of strong minification. It also improves image 
quality by countering the aliasing that is caused by the under-filtering of textures that do not use MIP-
mapping.  The single limitation of MIP-mapping is that it requires approximately 1/3 more texture 
memory per image. Depending on the situation, this cost may be minor when compared to the 
benefits in terms of rendering speed and image quality.  

There are some exceptions where MIP-maps should not be used. Specifically, MIP-mapping should 
not be used where filtering cannot be applied sensibly, such as for textures that contain non-image 
data such as indices or depth textures. It should also be avoided for textures that are never minified, 
for example, UI elements where texels are always mapped one-to-one to pixels. 

3.3.2. Generation 

Ideally MIP-maps should be created offline using a tool like PVRTexTool (available as part of the 
PowerVR Graphics SDK).  It is, however, possible to generate MIP-maps at runtime using the function 

glGenerateMipmap and this can be useful for updating the MIP-maps for a render to texture target. 

This will not work, however, with PVRTC textures which must have their MIP-maps generated offline.  
A decision must be made as to which cost is the most appropriate, the storage cost of offline 

generation, or the runtime cost of glGenerateMipmap. 

3.3.3. Filtering 

Finally, it should be noted that the lack of filtering between MIP-map levels can lead to visible seams 
at MIP-map transitions, a form of artifacting called “MIP-map banding”. Trilinear filtering using the filter 

mode GL_LINEAR_MIPMAP_LINEAR can effectively eliminate these seams, for a price (see Section 

3.4.1), and thus achieve an even higher image quality. 
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3.4. Texture Sampling 

3.4.1. Texture Filtering 

Texture filtering is used to increase the image quality of textures used in 3D scenes. However, it 
comes at a cost. Filtering works by taking multiple texture fetch values and combining them in order to 
produce as good a sampling value as possible to use in fragment calculations. Retrieving multiple 
values requires more data to be fetched, possibly from disparate areas of memory and so cache 
performance and bandwidth use can be affected. For instance, whenever two MIP-map levels must 
be blended together for trilinear filtering, the texture unit in the Graphics Core must spend time and 
bandwidth fetching and filtering the required data from the two MIP-map levels in question. This can 
cause the processing of a fragment to stall while the data is fetched and adds to the total amount of 
memory that must be transferred across the bus in order to render a frame. 

For independent texture reads on Series5 and Series5XT Graphics Cores, texture sampling can begin 
before the execution of a shader and so the latency of the texture fetch can be avoided. For 
dependent reads the cost can further be amortised thanks to the hardware scheduler in PowerVR 
Graphics Cores, particularly if the shader in question involves a lot of mathematical calculation. This 
latency can be hidden by swapping in another thread on the Graphics Core. This thread will process 
as much as possible with the original thread being swapped back once the fetch is complete. Further 
information on the functioning of the Coarse Grain Scheduler and thread scheduling within PowerVR 
hardware can be found in the “PowerVR Hardware Architecture Guide for Developers”. 

The three main techniques for texture filtering are bilinear, trilinear, and anisotropic, where each gives 
increased image quality than the previous, at an increasing cost. Performance can be gained by using 
an appropriate level of filtering, following the principle of “good enough” (see “PowerVR Performance 
Recommendations: The Golden Rules”). Also, not using anisotropic if trilinear is acceptable. Not using 
trilinear if bilinear is also acceptable. 

3.4.2. Dependent Texture  

A dependent texture read is a texture read in which the texture coordinates depend on some 
calculation within the shader instead of on a varying. As the values of this calculation cannot be 
known ahead of time it is not possible to pre-fetch texture data and so stalls in shader processing 
occur. 

Vertex shader texture lookups always count as dependent texture reads, as do texture reads in 

fragment shaders where the texture read is based on the .zw channels of a varying.  On some driver 

and platform revisions Texture2DProj() also qualifies as a dependent texture read if given a Vec3 

or a Vec4 with an invalid w.  

The cost associated with a dependent texture read can be amortised to some extent by hardware 
thread scheduling, but they should still be avoided wherever possible for good performance.  

Dependent texture reads are significantly more efficient on PowerVR Rogue Graphics Cores than 
SGX. However, there are still small performance gains to be had. For this reason, applications should 
always calculate coordinates before fragment shader execution unless the algorithm relies on this 
functionality. 

3.4.3. Wide Floating Point Textures 

For textures that exceed 32 bits per texel, each additional 32 bits is counted as a separate texture 
read. This also applies to half float texture with 3 or 4 components as well as float textures with 2 or 
more components. These larger formats should be avoided unless necessary for a particular effect.  
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3.5. Demystifying NPOT 

If a 2D texture has dimensions which are a power-of-two (i.e., width and height are 2
n
 and 2

m 
for some 

m and n), then the texture is said to be a POT texture (power-of-two). If they are not it is said to be an 
NPOT texture (non-power-of-two). This section seeks to clarify the status of NPOT textures in 
OpenGL ES. 

3.5.1. OpenGL ES Support 

NPOT textures are supported as required by the OpenGL ES specifications.  However, it is necessary 
to point out the following: 

 

 NPOT textures are not supported in OpenGL ES 1.1 implementations. 

 NPOT textures are supported in OpenGL ES 2.0 implementations, but only with the wrap mode 

of GL_CLAMP_TO_EDGE. 

 The default wrap mode in OpenGL ES 2.0 is GL_REPEAT. This must be specifically 

overridden in an application to GL_CLAMP_TO_EDGE for NPOT textures to function 

correctly. 

 If this wrap mode is not correctly set then an “invalid texture” error will occur, likewise a 
driver error may occur at runtime, on newer drivers, to highlight the need to set a wrap 
mode. 

3.5.2. GL_IMG_texture_npot 

An extension exists (GL_IMG_texture_npot) to provide some of the functionality found outside of 

the core OpenGL ES specification. This extension allows the use of the following filters for NPOT 
textures: 

 

 LINEAR_MIPMAP_NEAREST 

 LINEAR_MIPMAP_LINEAR 

 NEAREST_MIPMAP_NEAREST 

 NEAREST_MIPMAP_LINEAR 

 

It also allows the calling of glGenerateMipmapOES with an NPOT texture to generate NPOT MIP-

maps. Like all other OpenGL extensions, the application should check for this extension’s presence 
before attempting to load and use it. 

3.5.3. Guidelines 

Finally, a few additional points should be considered when using NPOT textures:  

 

 POT textures should be favoured over NPOT textures for the majority of use cases as this gives 
the best opportunity for the hardware and driver to work optimally. 

 A 512x128 texture will qualify as a POT texture, not an NPOT texture, where rectangular POT 
textures are fully supported.  

 2D applications (such as a browser or other application rendering UI elements where an NPOT 
texture is displayed with a one-to-one texel to pixel mapping) should see little performance loss 
from the use of NPOT textures other than possibly at upload time. 

 To ensure that texture upload can be optimally performed by the hardware, use textures where 
both dimensions are multiples of 32 pixels. 

 The use of NPOT textures may cause a drop in performance during 3D rendering. This can vary 
depending upon MIP-map levels, size of the texture, texture usage and the target platform.   
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3.6. Texture Uploading 

When a texture is uploaded through the use of glTexImage2D the input data is in linear scan-line 

format. Internally, PowerVR hardware uses its own layout to improve memory access locality and 
improve cache efficiency. Reformatting of the data is done on chip by dedicated hardware and thus is 
very fast, however, it is still recommended that a few steps be taken to minimize the cost of this 
reformat. 

 

 Textures should be uploaded during non-performance critical periods, such as initialisation. This 
helps avoid the frame rate dips associated with additional texture loading.  

 Avoid uploading texture data mid-frame to a texture object that has already been used for that 
frame. 

 Consider performing a “warm-up” step after texture uploads have been performed. Once again, 
this helps avoid the frame rate dips associated with texture loading. 

3.6.1. Texture Warm-up 

The warm-up step mentioned before ensures that textures are fully uploaded immediately. By default, 

glTexImage2D does not perform all the processing required to upload immediately. Instead, the 

texture is fully uploaded the first time it is used. It is possible to force an upload by drawing a series of 
triangles off screen or otherwise obscured with the texture object in question bound and so marked for 
use. Performing this for all textures in a scene will avoid the cost and potential stutters when they are 
uploaded on first use. 

3.6.2. Texture Formats and Precision 

In general, textures should be read at lowp (see Section 4.5.7). The exceptions to this are half float 

textures which should be read as mediump, and float and depth textures which should be read as 

highp. 

3.7. Render to Texture 

The preferred method for rendering to textures on OpenGL ES 2.0 is through the use of Frame Buffer 
Objects (FBOs) with textures as attachments. 

For maximised performance, FBOs should be rendered to in series, submitting all calls for one FBO 
before moving to the next. This serves to minimize state changes, as well as reducing unnecessary 
memory bandwidth usage caused by flushing partially completed renders when the target FBO is 
changed. For optimal performance, attachments should be unique to each FBO and attachments 
should not be added or removed once the FBO has been created. 

3.8. Mathematical Look-ups 

Sometimes it can be a good idea to encode the results of a complex function into a texture and use it 
as a look-up table instead of performing the calculations in a shader. However, this will only provide a 
boost in performance if a bottleneck has been identified in the processing of the shader in question, 
and bandwidth is free to perform the texture lookup. If the function parameters (and thus the texture 
coordinates in the look-up table) vary wildly between adjacent fragments then cache efficiency will 
suffer. As a significant amount of work must be saved for this to be an optimisation, profiling should be 
performed to determine if the results of using look-up tables are acceptable. 
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4. Optimizing Shaders 

4.1. PVRShaderEditor 

To demystify shader optimization, we provide a GUI utility called PVRShaderEditor (Figure 4) to share 
a wealth of off-line performance analysis data for developers as shaders are being written.  

 

 

Figure 4. PVRShaderEditor GUI 

 

Additionally, we provide shader disassembly for PowerVR Rogue GPUs within the tool so you can see 
the exact GPU instructions that have been generated by the compiler for your shader. Key features of 
the tool include: 

 

 Syntax highlighting for GLSL ES, GLSL, PFX, HLSL and OpenCL Kernels 

 Supports PowerVR Series5, Series5XT and Series6 offline GLSL ES compilers 

 Per-line cycle count estimates (PowerVR Series5, Series5XT and Series6 GPUs) 

 Simulated performance estimates (PowerVR Series5 and Series5XT GPUs) 

 Series6, Series6XT and Series6 FP16 disassembly 

 

The latest version of the tool can be downloaded here. 

4.2. Choose the Right Algorithm 

For complex shaders that run for more than a few cycles, picking the right algorithm is usually more 
important than low-level optimizations. It is highly recommended that a fast, well designed, algorithm 
be favoured over small performance tweaks to a poor algorithm. Bear in mind, that, although 
increasingly powerful, mobile graphics hardware is not designed to handle some of the latest 
techniques in desktop and console shaders. As such, a reduction in complexity will likely be needed 
from some of these techniques for mobile shader implementations. 

http://community.imgtec.com/developers/powervr/tools/pvrshadereditor/
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4.3. Know Your Spaces 

A common mistake in vertex shaders is to perform unnecessary transformations between model 
space, world space, view space and clip space. If the model-world transformation is a rigid body 
transformation, i.e., it only consists of rotations, translations, and mirroring, lighting and similar 
calculations can be performed directly in model space. Transforming uniforms such as light positions 
and directions to model space is a per-mesh operation, as opposed to transforming the vertex 
position to world or view space once per vertex and so is an optimization. In cases where a particular 
space must be used, e.g., for cube map reflections, it is often best to use this single space 
throughout. 

4.4. Flow Control 

PowerVR hardware offers full support for flow control in both vertex and fragment shaders without the 
need to explicitly enable an extension. When conditional execution depends on the value of a uniform 
variable, this is called “static flow control”, and the same shader execution path is applied to all vertex 
or fragment instances in a draw call. “Dynamic flow control”, on the other hand, refers to conditional 
execution based on per-fragment or per-vertex data, e.g., textures or vertex attributes.  

Static flow control can be used to combine many shaders into one big “uber-shader”. Thorough 
profiling should be done when taking this approach, however, as a performance advantage may not 
be gained. A better solution when an uber-shader is desired is to use pre-processor defines to create 
separate shaders from one larger shader at build time, effectively creating many smaller shaders from 
a single original source file.  

Using dynamic branching in a shader has a non-constant overhead that depends on the exact shader 
code. Dynamic branching is, therefore, unpredictable in its effect on performance. In general, the 
following specific points should be considered: 

 

 Make use of conditionals to skip unnecessary operations when the condition is met in a significant 
number of cases. 

 Do not branch to discard (see “PowerVR Performance Recommendations: The Golden Rules”). 

 Series5 and Series5XT only: Avoid branching to a texture read as samplers in dynamic 
branches qualify as “dependent texture reads” and will harm performance. 
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4.5. Demystifying Precision 

PowerVR hardware is designed with support for the multiple precision features of graphics APIs such 
as OpenGL ES 2.0 and OpenGL ES 3.0. Three precision modifiers are included in the API spec for 

OpenGL ES 2.0 onwards, namely mediump, highp, and lowp. Lower precision calculations can be 

performed faster, but need to be used carefully to avoid trouble with visible artefacts being introduced. 

The best method of arriving at the right precision for a given value is to begin with lowp or mediump 

for everything (except samplers) then increase the precision of specific variables until the visual 
output is as desired.  

4.5.1. Highp 

Float variables with the highp precision modifier will be represented as 32 bit floating point values, 

whereas integer values range from 2
31

-1 to -2
31

. This precision should be used for all vertex position 
calculations, including world, view, and projection matrices, as well as any bone matrices used for 

skinning where the precision, or range, of mediump is not sufficient. It should also be used for any 

scalar calculations that use complex built-in functions such as sin, cos, pow, log, etc. 

4.5.2. Mediump 

Variables declared with the mediump modifier are represented as 16 bit floating point values covering 

the range [65520, -65520]. The integer values cover the range [2
15

-1, -2
15

]. This precision level 

typically offers a performance improvement over highp, and should be considered wherever highp 

would normally be used (provided the precision is sufficient and maximum and minimum values will 
not be overflowed). 

4.5.3. Lowp 

A variable declared with the lowp modifier will use a 10 bit fixed point format on Series5, allowing 

values in the range [-2, 2] to be represented to a precision of 1/256. The integer values are in the 
range of [2

9
 -1, -2

9
]. This precision is useful for representing colours and any data read from low 

precision textures, such as normals from a normal map. Care must be taken not to overflow the 

maximum or minimum value of lowp precision, especially with intermediate results. 

4.5.4. Swizzling 

Swizzling is the act of accessing or reordering the components of a vector out of order. Some 
examples of swizzling can be found next: 

 

a = var.brg;    // Swizzled – Out of order access 

b = vec3(var.g, var.b, var.r); // Swizzled – Out of order access 

c = vec3(vec4);   // Not swizzled – Dropping a component does not change 

    // access order 

d.gr = a.gr + b.gr   // Not swizzled – This will be optimized to a  

     // non-swizzled form 

 

Swizzling costs performance on Series5 (lowp only) and Series5XT (all precisions) due to the 
additional work required to reorder vector components. As PowerVR Series6 is scalar based, 
swizzling is a significantly cheaper operation. 

4.5.5. Attributes 

The per-vertex attributes passed to a vertex shader should use a precision appropriate to the data-

type being passed in, so, for example, highp would be unrequired for a float whose maximum value 

never goes above 2 and for which a precision of 1/256 would be acceptable.  
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4.5.6. Varyings 

Varyings represent the outputs from the vertex shader which are interpolated across a triangle and 
then fed into the fragment shader. Each varying requires additional space in the parameter buffer, and 
additional processing time to perform interpolation. To keep this to a minimum, as few a number of 
varyings as possible should be used.   

Packing Varyings 

Packing multiple varyings together, for example packing two Vec2 into a single Vec4 should suffer no 

performance penalty and will save varyings. Exclusively on PowerVR Series5 and Series5XT, co-

ordinate varyings which are packed into the .zw channel of a Vec4 will always be treated as a 

dependent texture read and should be avoided (see Section 3.4.2). 

4.5.7. Samplers 

Samplers are used to sample from a texture bound to a certain texture unit. The default precision for 

sampler variables is lowp, and generally this is good enough. Two main exceptions exist to the lowp 

rule. If the sampler will be used to read from either a depth or float texture then it should be declared 

with highp. On the other hand, if the sampler will be used to read from a half float texture then it 

should be declared as mediump. 

4.5.8. Uniforms 

Uniform variables represent values that are constant for all vertices or fragments processed as part of 
a draw call. Similar to redundant state changes, redundant uniform updates in between draw calls 
should be avoided. Unlike attributes and varyings, uniform variables can be declared as arrays. 
However, care should be taken when using uniform arrays. This is because while a certain number of 
uniforms can be stored in registers on-chip, large uniform arrays will be stored in memory and 
accessing them comes at a bandwidth and execution time cost. 

Constant Calculations 

The PowerVR shader compiler is able to extract calculations based on constant values (for example 
uniforms) from the shader and perform these calculations once per draw call.  

4.5.9. Conversion Costs 

When performing arithmetic on multiple precisions within the same calculation it is likely that values 
will have to be “packed” or “unpacked”. Packing is the act of taking a higher precision value and 
placing into a lower precision variable while unpacking is the reverse and involves taking a lower 
precision value and placing it into a higher precision variable.  

Where possible precisions should be kept the same for an entire calculation as each pack and unpack 
has a cost associated with it. This cost can be further amortised by writing shaders in such a way that 
all higher precision calculations are performed together, at the top of the shader, and all lower 
precision calculations performed at the bottom. This ensures that variables are not repeatedly packed 

and unpacked. It also ensures that variables are not all unpacked into highp thereby losing any 

benefit of using lower precision. 
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4.6. Scalar Operations 

It is very easy to accidently vectorise a calculation. Hence, one should be wary of vectorising scalar 
operations where it cost more cycles for the same output. For example: 

 

highp vec4 v1, v2; 

highp float x, y; 

 

// Bad 

v2 = (v1 * x) * y; // vector * scalar followed by vector * scalar totals 8 scalar muladds 

 

// Good 

v2 = v1 * (x * y); // scaler * scalar followed by vector * scalar totals 5 scalar muladds 

4.7. “Const” Data in Shaders  

If used correctly the const keyword can provide a significant performance boost. For example, a 

shader that declares a const array outside of the main() block can perform significantly better 

than the same shader with the array not marked as const, even if the array could be treated as such. 

Another example would be the use of a const value to reference an array member. In this example, if 

the value is const the Graphics Core can know ahead of time that the number will not change and 

data can be pre-fetched prior to the shader being ran. 
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5. Optimizing Specific Techniques 

5.1. Multiple Render Targets (Series6 only) 

Multiple Render Targets (MRTs) are available in a variety of APIs, and are supported on PowerVR 
hardware from Series6 onwards. By using MRTs properly developers can take advantage of the tile-
based architecture of PowerVR hardware, keeping all render targets entirely on-chip for a significant 
performance boost. In order to benefit from this feature the combined bit rate of all MRTs should be 
no more than 128bits per pixel. 

5.2. Efficient Sprite Rendering 

Rendering sprites efficiently may seem like a trivial exercise. However, without careful consideration 
an application may be unresponsive and sluggish due to poor graphics performance. Traditional sprite 
render tends to see textures drawn, using alpha blending, on to quads. These quads will consist of 
large areas of alpha, either full alpha, or partial alpha. Areas of full alpha are traditionally discarded 

using either the discard keyword or alpha testing, while areas of partial alpha undergo blending. 

Both of these have some form of impact on performance versus fully opaque objects meaning that a 
large number of sprites being drawn inefficiently can seriously harm performance. 

The discard keyword (see “PowerVR Performance Recommendations: The Golden Rules”) should 

be avoided in favour of the much faster alpha blending. Even when favouring alpha blending, 
performance can still be affected if there are a large number of sprites. One method to minimise the 
impact of several layers of blended sprites is to increase the geometry complexity of the sprites in 
order to reduce the amount of wasted transparent fragments. For example, if a sprite is circular in 
shape and is rendered using the most optimal fitting quad, 22% of the fragments processed are 
redundant. Significant performance improvements can be gained by reducing the wasted 
transparency by increasing geometry complexity. 

PowerVR hardware has excellent vertex processing capabilities and is designed to handle large 
amounts of geometry data, far in excess of what is present in most sprite based applications. As such, 
increasing complexity should have minimal performance impact and any impact this may have is most 
likely outweighed by the savings of rendering less transparency. If we increase the complexity of the 
previous case of a perfectly fitting quad around a circular sprite to that of a dodecagon (twelve sided 
polygon) we can reduce the amount of wasted fragment processing to just 3%. 

 

 

Assuming radius  of 64 
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Figure 5. Increasing complexity and reducing processing 
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6. Contact Details 
For further support, visit our forum: 

http://forum.imgtec.com 

 

Or file a ticket in our support system: 

https://pvrsupport.imgtec.com 

 

To learn more about our PowerVR Graphics SDK and Insider programme, please visit: 

http://www.powervrinsider.com 

 

For general enquiries, please visit our website: 

http://imgtec.com/corporate/contactus.asp 

 

http://forum.imgtec.com/
https://pvrsupport.imgtec.com/
http://www.powervrinsider.com/
http://imgtec.com/corporate/contactus.asp
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